Codeforces-1487 D. Pythagorean Triples(数学)

在这里插入图片描述
思路:
数学题,打表可以找出规律,不过我们也可以推一下。

c 2 = a 2 + b 2 c^2 = a^2 + b^2 c2=a2+b2
c = a 2 − b c = a^2 - b c=a2b
⇒ \Rightarrow c 2 = b 2 + c + b c^2 = b^2 + c + b c2=b2+c+b
⇒ \Rightarrow c ( c − 1 ) = b ( b + 1 ) c(c-1)=b(b+1) c(c1)=b(b+1)
因为 c , c − 1 c,c-1 c,c1互质, b , b + 1 b,b+1 b,b+1互质,所以要么 c = b c=b c=b,要么 c = b + 1 c=b+1 c=b+1
c > b c>b c>b
所以 c = b + 1 c=b+1 c=b+1

推出 b = ( a 2 − 1 ) / 2 b=(a^2-1)/2 b=(a21)/2
推出 c = ( a 2 − 1 ) / 2 + 1 c=(a^2-1)/2+1 c=(a21)/2+1

易得 a a a必须得为大于3的奇数, c c c才能有意义。而我们已经知道 c c c的最大范围 n n n,所以只需要算出存在多少 ( a 2 − 1 ) / 2 + 1 ≤ n (a^2-1)/2+1≤n (a21)/2+1n a = 2 k + 1 , k ≥ 1 a=2k+1,k≥1 a=2k+1,k1

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 7;
const int mod = 1e9 + 7;
typedef long long ll;
ll c[maxn];
int cnt;
void init() {
    cnt = 0;
    for(int a = 3;a <= 100000;a += 2) {
        c[++cnt] = (1ll * a * a - 1) / 2 + 1;
    }
}
int main() {
    init();
    int T;scanf("%d",&T);
    while(T--) {
        int n;scanf("%d",&n);
        int ans = upper_bound(c + 1,c + 1 + cnt,n) - (c + 1);
        printf("%d\n",ans);
    }
    return 0;
}
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页